

PETRONAS Unconventional Journey

September 2014

© 2014 PETROLIAM NASIONAL BERHAD (PETRONAS)

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

PART I

- Overview Project
- What's Unconventional?

- Challenges & Technology Requirement
- Fiscal Incentives

PART I

- Overview Project
- What's Unconventional?

- Challenges & Technology Requirement
- Fiscal Incentives

PROGRESS ENERGY CANADA LTD

Progress Energy Canada Ltd.

Focused in three areas of the Western Canadian Sedimentary Basin

North Montney Joint Venture (NMJV)

- Located in the province of British Columbia
- Progress is the largest Montney land holder
- Closest resource to the West Coast of Canada
- Include conventional and unconventional zones

Progress Sasol Montney Partnership (PSMP)

- Resulted from Talisman asset's acquisition in 2014
- Increased Montney land position for future development

Deep Basin

- Located in the province of Alberta
- Stacked zones with over 15 producing horizons
- Natural gas, NGL & oil drilling opportunities

EVOLUTION OF THE NORTH MONTNEY

2005

First multistage horizontals at Dawson

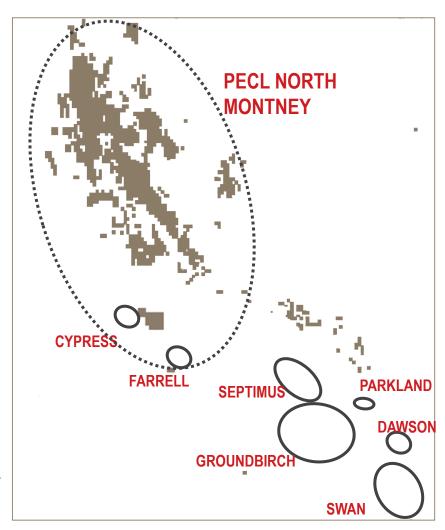
Q3 - 2008

First North Montney vertical test

Q1 - 2009

First horizontal test

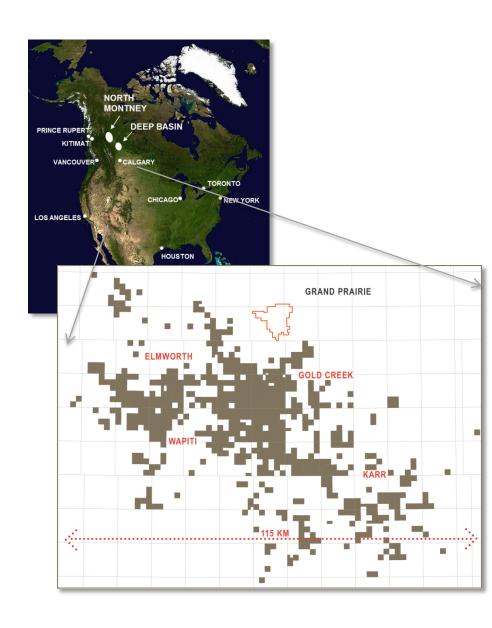
Q1 - 2010


First developments at Town and Farrell

2012

- 250 producing horizontal wells
- 9 commercial developments
- 2 international joint ventures
- PETRONAS/Progress acquisition

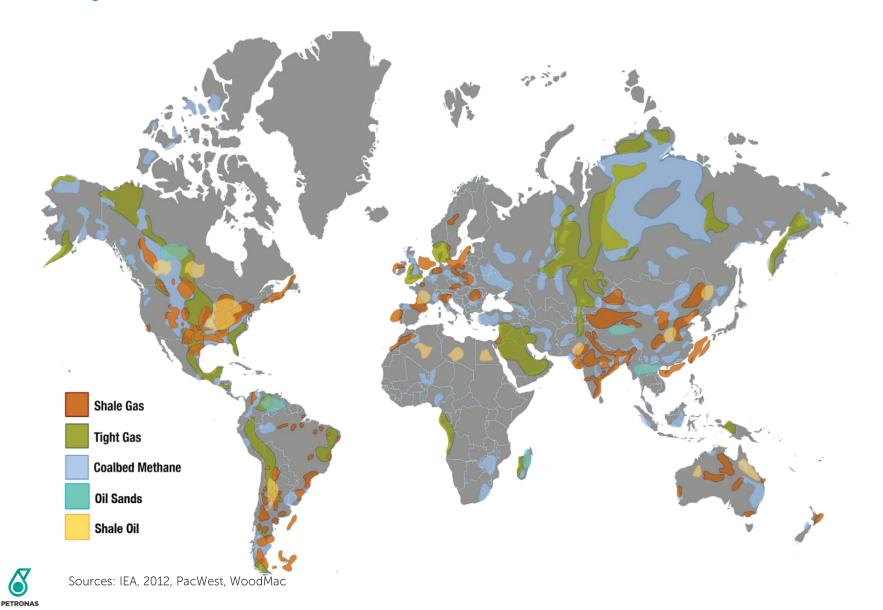
2014


- Progress drilled 315 horizontal wells to-date
- Over 400 mmscf/d production from NMJV

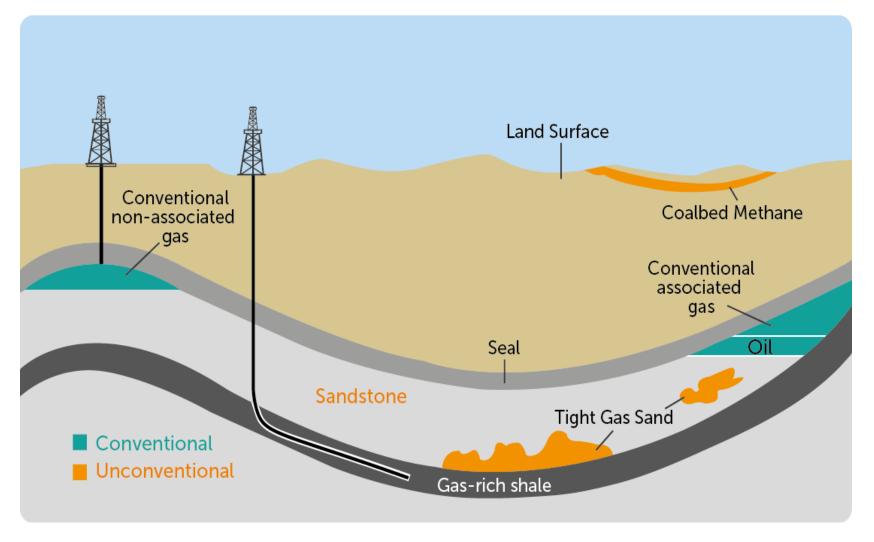
DEEP BASIN

- Deep Basin forms part of WCSB, located in North West Alberta
- Progress has ~380,000 net acres of land (Elmworth, Gold Creek, Karr, Wapiti)
- Intially develop in 2004-2010 for tight gas drilling results averaged 1.8 mmscf/d, with occasional wells at >5 mmscf/d
- PECL first operator to drill horizontal wells for Dunvegan oil in 2011.
- Original vertical rates 10-20 bbls/day
- Initial 30 day light oil rates 210 290 bopd
- Wells stimulated using innovative oil fluid system to reduca formation damage.
- Frac oil recycling system developed to reduce capital costs.

PART I

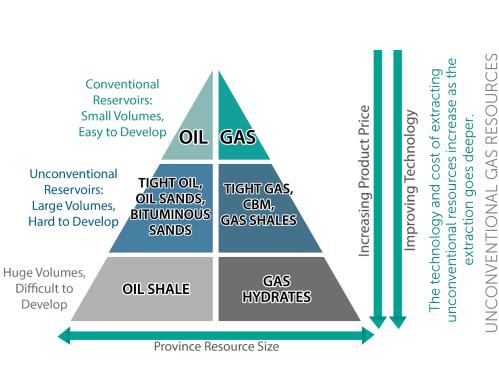

- Overview Project
- What's Unconventional?

- Challenges & Technology Requirement
- Fiscal Incentives


UNCONVENTIONAL: WHAT IS OUT THERE?

Nearly half of the increase in natural gas production to 2035 is from unconventional gas, with most of this coming from the United States, Australia and China.

UNCONVENTIONAL HYDROCARBONS: WHERE IS IT?


Conventional vs Unconventional

UNCONVENTIONAL HYDROCARBONS: WHAT IS IT?

The key difference between "conventional" and "unconventional" hydrocarbons is the manner, ease and cost associated with extracting the resource.

RESOURCES

TIGHT GAS

- · Continuous deposition
- Low permeability
- Both traditional & "basin-center" settings

- Self-sourcing reservoir
- Gas absorbed in coal requires depressurizing & usually dewatering

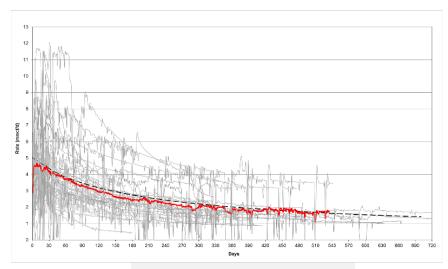
SHALE GAS

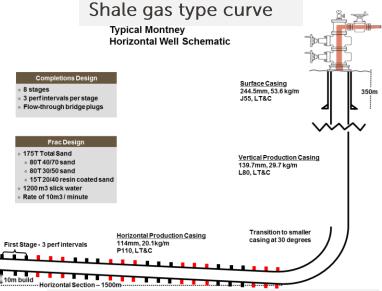
- Self-sourcing plus traditional porosity reservoirs gas absorbed in organic matter
- Requires pervasive natural or created fracture network

SHALE OIL

- · Shales rich in bituminous material and yield petroleum upon distillation.
- Extracted via mining and retortion or in situ process.

- Majority of bitumen is trapped at very shallow depths
- Immobile at undisturbed reservoir conditions
- Extremely high viscosities, 8.5-15 deg API, 60,000-400,000 cP
- · Requires heat to mobilize the fluid


PART I


- Overview Project
- What's Unconventional?

- Challenges & Technology Requirement
- Fiscal Incentives

SUBSURFACE CHALLENGES

Horizontal Well Schematic

Development Practice:

- Due to the reservoir decline behavior high number of wells are required to be drilled every year
- Uncertainty in well performance requires sufficient wells to be drilled before moving into full development
- Each wells will be drilled horizontally and fractured with several stages according to the frac design.
- The typical drilling and completion cost for shale gas wells range from \$6-8 Million.
- Well placement is key to unlock the optimum resource from shale

OPERATIONAL LOGISTIC CHALLENGES

Typical Frac Operation:

- Handling logistics of water, sand trucking pose challenges as the operation are extensive.
- Monitoring of the fracturing operation can now being done real-time.
- Less populated area are preferred for operation.
- Road / highway access is also crucial.

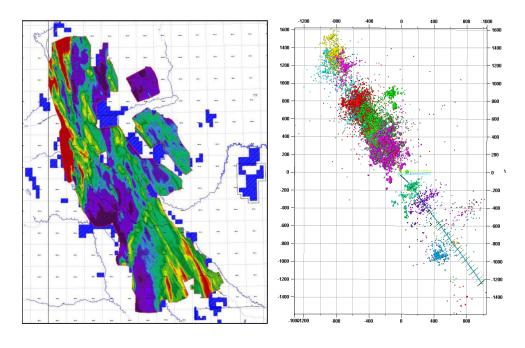
WATER HANDLING CHALLENGES

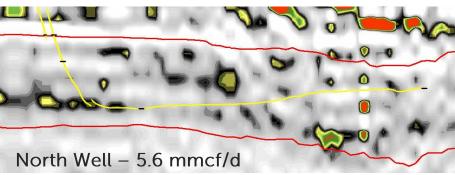
Each Area to Have:

- 20,000 30,000 m3 double contained recycled water storage
- 50,000 200,000 m3 fresh water storage
- Produced water recycle system
- 8" pipeline connection to each pad

Typical Operation:

- Combination of fresh and produced water continuously pumped to C-rings at wellsite during fracturing
- Water heated during winter using specialized natural gas portable system
- Flowback water pumped back to central site for storage and re-use




NORTH MONTNEY TECHNOLOGY APPLICATIONS

- Integrated subsurface fracturing evaluation team
 - microseismic to define sweet spot and fracturing efficiency.
 - collaboration between operator and frac service providers are crucial.
 - real-time monitoring to ensure quick decisions.
- Modular design will reduce facilities cost and facilities installation timing.
- Drilling pads and Pod concept reduce footprint for operation.
- Recycling system for water and fracture fluid to reduce completion cost.

Integrated Subsurface

Subsurface Technology:

- Microseismic and reservoir modelling to optimize spacing and well placement
- Extensice 3D seismic used to improve well placement, fault mapping and inversion analysis.
- Geological mapping ensure understanding of hydrocarbon recovery trends for asset

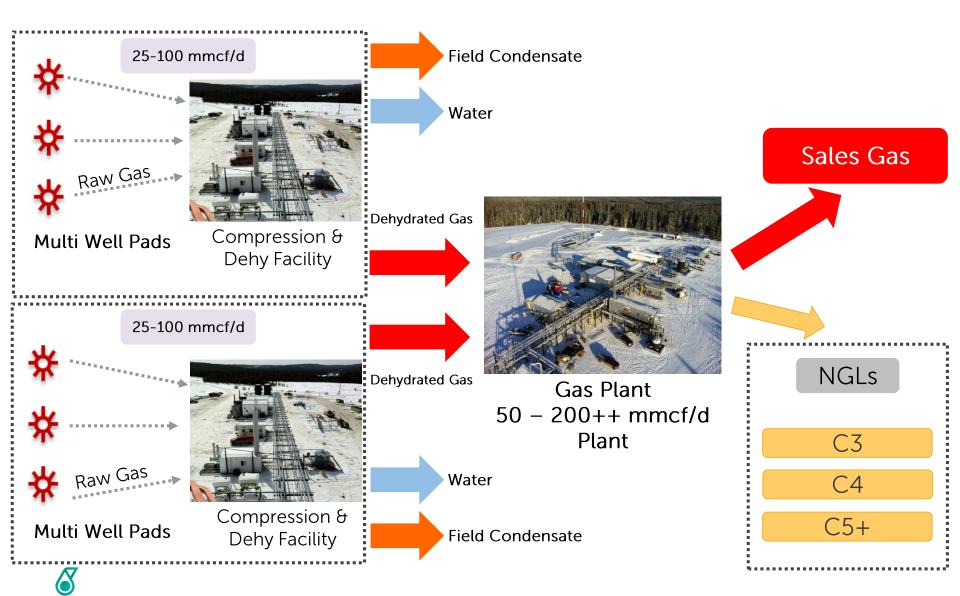
Facilities - Modular Design

Consistent, repeatable design

Typical Compressor & Dehydration Facility

- Stage 1: 36-54 mmcf/d
 - Two inlet separators and two gas dehydrators
 - Two or Three 2,370 HP compressors
 - Liquids storage
 - Auxiliary Equipment
- Stage 2: Expand to 100-150 mmcf/d
 - Add additional compressors, separators,
 - Dehydrators and associated equipment

Advantages


- Use economies of scale
- Keep equipment size workable
- Standardize across areas
- Design with sand erosion in mind
- Sand filters and wet meters at wellsites

Standardized Process and Facilities

Repeatable and Lower Cost to Construct and Operate

PART I

- Overview Project
- What's Unconventional?

- Challenges & Technology Requirement
- Best Parctise & Fiscal Incentives

NORTH MONTNEY ECONOMIC & FISCAL ADVANTAGES

- BC deep drilling credit 3% royalty for 1 to 3 years
- 3rd party Pipeline accesss.
- Alaska highway provides all season access
- Few surface stakeholders
- Minimal above ground issues: i.e. Right of way & first nation
- Liquids-rich stream significant revenue lift (8 to 30 bbls/mmcf)
- High heat content (1100-1260 mmbtu/scf)
- No hydrogen sulphide, minimal CO2
- Low Opex \$0.28/mcf

PROJECT EXECUTION CAPABILITY

- Proven track record over the past 12 years Operating in the basin since 2002.
 - Over 1,000 wells drilled in BC, including 315 Montney horizontals
 - Over 20 compressor stations constructed and online
 - Three gas plants online
- Top five driller in British Columbia for past five years
 - Recognized low cost producer
 - Top quartile finding and development costs
 - Operated over 25 rigs in Q4 2013
- Long term Drilling and Frac Contracts
- Canadian Association of Petroleum Producers (CAPP)
 - Highest level of Environmental, Health and Safety performance
- Capable, Stable and Professional Workforce
 - 229 employees and growing
 - Average industry experience of 15.6 years
 - Low attrition rate of 7.5% (well below industry average)
 - Significant in-house unconventional expertise

CONCLUSIONS

- Unconventional hydrocarbon sources are revolutionizing the energy industry
- High capital costs require optimized performance and stable sociopolitical regime
- PETRONAS is positioning itself to be leading player in this sector
- The North Montney is a world class resource with a promising future
- Technological innovation will lead to cost and productivity breakthroughs

THANK YOU

